上周在中国R语言大会北京会场上,给大家分享了如何利用R语言交互数据可视化。现场同学对这块内容颇有兴趣,故今天把一些常用的交互可视化的R包搬出来与大家分享。
rCharts包
说起R语言的交互包,第一个想到的应该就是rCharts包。该包直接在R中生成基于D3的Web界面。
rCharts包的安装
require(devtools)
install_github('rCharts', 'ramnathv')
rCharts函数就像lattice函数一样,通过formula、data指定数据源和绘图方式,并通过type指定图表类型。
下面通过例子来了解下其工作原理。我们以鸢尾花数据集为例,首先通过name函数对列名进行重新赋值(去掉单词间的点),然后利用rPlot函数绘制散点图(type=“point”),并利用颜色进行分组(color=“Species”)。
library(rCharts)
names(iris) <- gsub("\\.", "", names(iris))
p1 <- rPlot(SepalLength ~ SepalWidth | Species, data = iris, color = "Species", type = "point")
p1
rCharts支持多个javascript图表库,每个都有自己的长处。每一个图表库有多个定制选项,其中大部分rCharts都支持。
NVD3 是一个旨在建立可复用的图表和组件的 d3.js 项目——它提供了同样强大的功能,但更容易使用。它可以让我们处理复杂的数据集来创建更高级的可视化。在rCharts包中提供了nPlot函数来实现。
下面以眼睛和头发颜色的数据(HairEyeColor)为例说明nPlot绘图的基本原理。我们按照眼睛的颜色进行分组(group=“eye”),对头发颜色人数绘制柱状图,并将类型设置为柱状图组合方式(type=“multiBarChart”),这样可以实现分组和叠加效果。
library(rCharts)
hair_eye_male <- subset(as.data.frame(HairEyeColor), Sex == "Male")
hair_eye_male[, 1] <- paste0("Hair", hair_eye_male[, 1])
hair_eye_male[, 2] <- paste0("Eye", hair_eye_male[, 2])
n1 <- nPlot(Freq ~ Hair,
group = "Eye", data = hair_eye_male,
type = "multiBarChart"
)
n1
可以通过图形右上角选择需要查看或隐藏的类别(默认是全部类别显示的),也能通过左上角选择柱子是按照分组还是叠加的方式进行摆放(默认是分组方式)。如果选择Stacked,就会绘制叠加柱状图。
Highcharts是一个制作图表的纯Javascript类库,支持大部分的图表类型:直线图,曲线图、区域图、区域曲线图、柱状图、饼状图、散布图等。在rCharts包中提供了hPlot函数来实现。
以MASS包中的学生调查数据集survery为例,说明hPlot绘图的基本原理。我们绘制学生身高和每分钟脉搏跳动次数的气泡图,以年龄变量作为调整气泡大小的变量。
library(rCharts)
a <- hPlot(Pulse ~ Height,
data = MASS::survey, type = "bubble",
title = "Zoom demo", subtitle = "bubble chart",
size = "Age", group = "Exer"
)
a$colors(
"rgba(223, 83, 83, .5)", "rgba(119, 152, 191, .5)",
"rgba(60, 179, 113, .5)"
)
a$chart(zoomType = "xy")
a$exporting(enabled = T)
a
rCharts包可以画出更多漂亮的交互图, http://ramnathv.github.io/rCharts/和https://github.com/ramnathv/rCharts/tree/master/demo有更多的例子可供大家学习。
recharts包
学习完rCharts包,可能有读者会问,我们有没有国人开发的包实现相似的效果呢?这边给大家推荐一个同样功能强大的recharts包。
本包来源于百度开发的国内顶尖水平的开源d3-js可视项目Echarts(Github Repo)。Yang Zhou和Taiyun Wei基于该工具开发了recharts包,经Yihui Xie修改后,可通过htmlwidgets传递js参数,大大简化了开发难度。但此包开发仍未完成。为了赶紧上手用,基于该包做了一个函数echartR(下载至本地,以后通过source命令加载),用于制作基础Echart交互图。需要R版本>=3.2.0.
安装方式如下:
library(devtools)
install_github('yihui/recharts')
安装完后,需要在https://github.com/madlogos/recharts/blob/master/R/echartR.R将echartR.R脚本下载到本地。
假如想对鸢尾花数据集绘制散点图,可以执行如下代码:
source("~echartR.R")
names(iris) <- gsub("\\.", "", names(iris))
echartR(
data = iris, x = ~SepalLength, y = ~PetalWidth, series = ~Species,
type = "scatter"
)
绘制柱状图:
hair_eye_male <- subset(as.data.frame(HairEyeColor), Sex == "Male")
hair_eye_male[, 1] <- paste0("Hair", hair_eye_male[, 1])
hair_eye_male[, 2] <- paste0("Eye", hair_eye_male[, 2])
echartR(
data = hair_eye_male, x = Hair, y = ~Freq, series = ~Eye,
type = "bar", palette = "fivethirtyeight",
xlab = "Hair", ylab = "Freq"
)
玫瑰图:
dtcars <- mtcars
dtcars$car <- row.names(dtcars)
dtcars$transmission <- as.factor(dtcars$am)
levels(dtcars$transmission) <- c("Automatic", "Manual")
dtcars$cylinder <- as.factor(dtcars$cyl)
dtcars$carburetor <- as.factor(dtcars$carb)
echartR(dtcars,
x = ~cylinder, y = ~car, type = "rose",
palette = "colorblind", title = "Number of Cylinders",
subtitle = "(source: mtcars)"
)
雷达图:
player <- data.frame(
name = c(rep("Philipp Lahm", 8), rep("Dani Alves", 8)),
para = rep(c(
"Passing%", "Key passing", "Comp crosses",
"Crossing%", "Successful dribbles",
"Dispossessed", "Dribbled past", "Fouls"
), 2),
value = c(
89.67, 1.51, 0.97, 24.32, 0.83, 0.86, 1.15, 0.47,
86.62, 2.11, 0.99, 20.78, 1.58, 1.64, 0.9, 1.71
)
)
echartR(player,
x = ~para, y = ~value, series = ~name, type = "radarfill",
symbolList = "none", palette = c("firebrick1", "dodgerblue"),
title = "Lahm vs Alves", subtitle = "(by @mixedknuts)"
)
plotly包
接下来要给大家介绍的是另一个功能强大的plotly包。它是一个基于浏览器的交互式图表库,它建立在开源的JavaScript图表库plotly.js之上。
有两种安装方式:
install.packages("plotly")
或者
devtools::install_github("ropensci/plotly")
plotly包利用函数plot_ly函数绘制交互图。
如果相对鸢尾花数据集绘制散点图,需要将mode参数设置为“markers”。
library(plotly)
p <- plot_ly(iris,
x = Petal.Length, y = Petal.Width,
color = Species, colors = "Set1", mode = "markers"
)
p
如果想绘制交互箱线图,需要将type参数设置为box。
library(plotly)
plot_ly(midwest, x = percollege, color = state, type = "box")
如果你已熟悉ggplot2的绘图系统,也可以针对ggplot2绘制的对象p,利用ggplotly函数实现交互效果。例如我们想对ggplot绘制的密度图实现交互效果,执行以下代码即可。
library(plotly)
p <- ggplot(data = lattice::singer, aes(x = height, fill = voice.part)) +
geom_density() +
facet_grid(voice.part ~ .)
(gg <- ggplotly(p))
其他
此外还有很多好玩有用的交互包。例如专门用来画交互时序图的dygraphs包,可通过install.packages(“dygraphs”)安装。
library(dygraphs)
lungDeaths <- cbind(mdeaths, fdeaths)
dygraph(lungDeaths) |>
dySeries("mdeaths", label = "Male") |>
dySeries("fdeaths", label = "Female") |>
dyOptions(stackedGraph = TRUE) |>
dyRangeSelector(height = 20)
DT包实现R数据对象可以在HTML页面中实现过滤、分页、排序以及其他许多功能。通过install.packages(“DT”)安装。
以鸢尾花数据集iris为例,执行以下代码:
library(DT)
datatable(iris)
networkD3包可实现D3 JavaScript的网络图,通过install.packages(“networkD3”)安装。
下面是绘制一个力导向的网络图的例子。
# 加载数据
data(MisLinks)
data(MisNodes)
# 画图
forceNetwork(
Links = MisLinks, Nodes = MisNodes,
Source = "source", Target = "target",
Value = "value", NodeID = "name",
Group = "group", opacity = 0.8
)
我们可以通过d3treeR包绘制交互treemap图,利用
devtools::install_github("timelyportfolio/d3treeR")
完成d3treeR包安装。
library(treemap)
library(d3treeR)
data("GNI2014")
tm <- treemap(
GNI2014,
index = c("continent", "iso3"),
vSize = "population",
vColor = "GNI",
type = "value"
)
d3tree(tm, rootname = "World")
今天主要是介绍了几个R常用的交互包。在R的环境中,动态交互图形的优势在于能和knitr、shiny等框架整合在一起,能迅速建立一套可视化原型系统。希望以后再跟各位分享这部分的内容。
发表/查看评论