首页
关于
论坛
投稿
搜索
推荐文章
2022-05-17
7 / 9
推荐文章
[朝花夕拾] 迎接信息时代的统计挑战
施涛
/
2014-05-14
本文略有修改,原文请点击此处 本文作者为俄亥俄州立大学的施涛。他把自己读郁彬老师的综述性文章:Embracing Statistical Challenges in the Information Technology Age的读后感和大家分享。 世事变迁,最近居然忽然有时间坐下来读些东西,重新审视一下这几年统计领域的发展了。粗略回想了一下,惭愧地发现我好像连博士导师的文章也没有系统地读过几篇,只……
推荐文章
“支持向量机系列”的番外篇二: Kernel II
张驰原
/
2014-05-08
原文链接请点击这里 在之前我们介绍了如何用 Kernel 方法来将线性 SVM 进行推广以使其能够处理非线性的情况,那里用到的方法就是通过一个非线性映射 $\phi(\cdot)$将原始数据进行映射,使得原来的非线性问题在映射之后的空间中变成线性的问题。然后我们利用核函数来简化计算,使得这样的方法在实际中变得可行。不过,从线性到非线性的推广我们并没有把 SVM 的式子从头推导一遍,而只是直接把最终……
推荐文章
昔日因,今日意
杨灿
/
2014-04-19
飞帅云:“三十功名尘与土,八千里路云和月。莫等闲,白了少年头,空悲切。”可我在耶鲁两年多了,基本一事无成。既没有像当年那样死磕Lasso和Boosting,也没有能追随Deep Learning 的浪潮。曾经真的以为人生就这样了,平静的心拒绝再有浪潮。斩了千次的情丝却断不了,百转千折她将我围绕。有人问我她究竟是哪里好?我想我是鬼迷心窍。 […] 她就是LMM,我给她起了一个美丽的中文……
推荐文章
“支持向量机系列”的番外篇一: Duality
张驰原
/
2014-03-19
原文链接请点击这里 在之前关于support vector的推导中,我们提到了dual,这里再来补充一点相关的知识。这套理论不仅适用于 SVM 的优化问题,而是对于所有带约束的优化问题都适用的,是优化理论中的一个重要部分。简单来说,对于任意一个带约束的优化都可以写成这样的形式: $$ \begin{aligned} \min&f_0(x) \\ s.t. &f_i(x)\leq……
推荐文章
支持向量机系列五:Numerical Optimization
张驰原
/
2014-03-06
原文链接请点击这里 作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法。确确实实只是简单介绍一下,原因主要有两个:第一这类优化算法,特别是牵涉到实现细节的时候,干巴巴地讲算法不太好玩,有时候讲出来每个人实现得结果还不一样,提一下方法,再结合实际的实现代码的话,应该会更加明……
推荐文章
支持向量机系列四:Outliers
张驰原
/
2014-02-22
原文链接请点击这里 在最开始讨论支持向量机的时候,我们就假定,数据是线性可分的,亦即我们可以找到一个可行的超平面将数据完全分开。后来为了处理非线性数据,使用 Kernel 方法对原来的线性 SVM 进行了推广,使得非线性的的情况也能处理。虽然通过映射\(\phi(\cdot)\)将原始数据映射到高维空间之后,能够线性分隔的概率大大增加,但是对于某些情况还是很难处理。例如可能并不是因为数据本身是非线……
推荐文章
支持向量机系列三:Kernel
张驰原
/
2014-02-17
原文链接请点击这里 前面我们介绍了线性情况下的支持向量机,它通过寻找一个线性的超平面来达到对数据进行分类的目的。不过,由于是线性方法,所以对非线性的数据就没有办法处理了。例如图中的两类数据,分别分布为两个圆圈的形状,不论是任何高级的分类器,只要它是线性的,就没法处理,SVM 也不行。因为这样的数据本身就是线性不可分的。 对于这个数据集,我可以悄悄透露一下:我生成它的时候就是用两个半径不同的圆圈加上……
推荐文章
支持向量机系列二: Support Vector
张驰原
/
2014-01-25
原文链接请点击这里 上一次介绍支持向量机,结果说到 Maximum Margin Classifier ,到最后都没有说“支持向量”到底是什么东西。不妨回忆一下上次最后一张图: 可以看到两个支撑着中间的 gap 的超平面,它们到中间的 separating hyper plane 的距离相等(想想看:为什么一定是相等的?),即我们所能得到的最大的 geometrical margin……
推荐文章
支持向量机系列一: Maximum Margin Classifier
张驰原
/
2014-01-23
原文链接请点击这里 支持向量机即 Support Vector Machine,简称 SVM 。我最开始听说这头机器的名号的时候,一种神秘感就油然而生,似乎把 Support 这么一个具体的动作和 Vector 这么一个抽象的概念拼到一起,然后再做成一个 Machine ,一听就很玄了! 不过后来我才知道,原来 SVM 它并不是一头机器,而是一种算法,或者,确切地说,是一类算法,当然,这样抠字眼的……
推荐文章
从数据到价值——创业团队应该关注的四个阶段
王汉生
/
2014-01-03
COS编辑部按:本文作者为北京大学王汉生教授,文章面向光华MBA学生系统梳理了从数据到价值的理念。作者简介:王汉生教授现任狗熊会会长、北京大学商务智能研究中心主任、北京大学光华管理学院商务统计与经济计量系系主任。现为ISI, ASA, IMS, RSS, ICSA会员,ASA会士(2014年6月23日更新)。 […] 这是一个最好的时代,移动互联网技术为从业者提供了无比丰富的数据。从……
推荐文章
use R for fun系列之玩转图像篇
刘辰昂
/
2013-09-01
系列以use R for fun为主题,以COS论坛上的精华帖、相关package以及自己的一些code为素材,结合自身的一些编程体会,从而整合成文。本文是第三篇玩转图像篇。 本文素材出处均已在正文中注明 接着for fun的话题往下讲,大家或多或少都曾经用过PS来玩过图片,其强大的功能令我们不得不赞叹,无论是美图还是是恶搞都曾给我们带来了不少的乐趣。今天我们就要让这种乐趣在万能的R中实现!当然实……
推荐文章
COS论坛精华帖系列——use R for fun系列之小应用制作篇
刘辰昂
/
2013-08-10
系列以use R for fun为主题,以COS论坛上的精华帖、相关的package以及自己的一些code为素材,结合自身的一些编程体会,从而整合成文。本文是第二篇小应用制作篇。 本文素材出处均已在正文注明 本文继续承接上一篇的话题(小游戏开发篇),继续在交互操作上做文章,不同的是这里引入了更丰富的操作和idea,仅仅做些小游戏还远远达不到我们的胃口,因此这里不妨再把思维拓宽些,让R来我们的生活服……
««
«
5
6
7
8
9
»
»»